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Abstract 

The use of effect size estimates in planning the sample size necessary for a future study 

can introduce substantial bias in the sample size planning process.  For instance, the 

uncertainty associated with the effect size estimate may result in average statistical power 

that is substantially lower than the nominal power specified in the calculation.  The 

present manuscript examines methods for incorporating the uncertainty present in an 

effect size estimate into the sample size planning process for both statistical power and 

accuracy in parameter estimation (i.e., desired confidence interval width).  Several 

illustrative examples are provided along with computer programs for implementing these 

procedures.  Discussion focuses on the choices among different approaches to 

determining statistical power and accurate parameter estimation when planning the 

sample size for future studies. 
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Sample Size Planning with Effect Size Estimates 

 When designing a study or an experiment, a number of critical decisions need to be 

made based on incomplete or uncertain information before data collection begins.  One of 

these critical decisions is planning a priori the sample size needed to achieve the 

researcher’s goal.  The goal of the sample size planning process may be adequate 

statistical power – the probability of correctly rejecting a false null hypothesis.  

Alternatively, the goal may be accurate parameter estimation – estimating the effect size 

with a specified level of precision.  If a study has moderate to low statistical power, then 

there is a moderate to high probability that the time and resources spent on the study will 

yield a nonsignificant result.  If a study results in a wide confidence interval for the effect 

size, then regardless of statistical significance, little information is gleaned regarding the 

actual magnitude of the effect. Consequently, it is good research practice – and indeed 

required by many granting agencies – to plan the sample size for a prospective study that 

will achieve the desired goal(s). 

 At first glance, study design is relatively simple, if computationally intensive, as 

there is a deterministic relationship among the criteria (i.e., statistical power or 

confidence interval width), sample size, the specified critical level (i.e., the Type I error 

rate ! or the confidence level), and the population effect size.1  If any three of these 

quantities are known, then the fourth can be calculated exactly.  In practice, the sample 

size for a prospective study is often calculated by setting the desired level of statistical 

power at a particular value such as .80 (e.g., Cohen, 1988, 1992) or the width of the 

standardized mean difference confidence interval to be a certain level (e.g., .10 or .20) for 

a specified level of !.  The necessary sample size for power may then be approximated 

from Cohen’s (1988) tables or determined exactly using available software such as, for 

example, G*Power (Erdfelder, Faul, & Buchner, 1996), Statistica (Steiger, 1999), or SAS 

(O’Brien, 1998; SAS Institute Inc., 2003) among others.  The necessary sample size for a 
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specified confidence interval for the standardized mean difference can be determined, for 

instance, from tables presented in Kelley & Raush (2006) or exactly from Kelley’s (2007) 

MBESS program available in R (R Development Core Team, 2006).  As straightforward 

as this may initially seem, the fine print on this process contains critical details that are 

often glossed over (e.g., see Lenth, 2001, for a practical discussion of the issues involved 

in study design).  Both statistical power and accurate parameter estimation require an 

estimated or hypothesized population effect size (e.g., see Muller & Benignus, 1992, p. 

217).  The requisite sample size calculated in this manner is conditional on the specified 

population effect size.  In other words, the logic of this manner of power calculation is as 

follows:  Assuming the population effect size is a specified value, then with sample size 

n, power will be .80.  This presents a certain irony – if the effect size is already known, 

why conduct the study?  In practice, the effect size is not known precisely and exactly, 

but estimates of the effect size may be available. 

 The present manuscript examines the relationships among statistical power and 

accurate parameter estimation, sample size, and estimates of the effect size.  Specifically, 

we first examine the impact of estimated effect sizes on statistical power and then discuss 

how to use prior information and probability distributions on the effect size to increase 

design efficiency, improve confidence intervals, and better achieve the desired level of 

statistical power or accurate parameter estimation.  The manuscript is organized as 

follows:  First we discuss traditional approaches to sample size planning and how the use 

of standard effect size estimates without incorporating information about uncertainty can 

bias statistical power.  We then discuss the benefits and rationale for incorporating a 

Bayesian perspective in the study design process and illustrate how to use this approach 

for statistical power calculations given effect size estimates with (a) no prior information 

and (b) with prior information such as from a meta-analysis.  We then discuss this 

approach when the criterion is accurate parameter estimation, i.e., a desired confidence 
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interval width.  Finally, we discuss conceptual and practical issues related to sample size 

planning.  Note that definitions and notation are summarized in Table 1A and expanded 

upon in footnote 2 and more extensive analytical details, as well as additional equations, 

are sequestered within footnotes. 

Approaches to Specifying the Population Parameter 

 The population effect size parameter, for instance, !, is a necessary input to the 

process of determining the sample size required for the desired level of statistical power 

or accurate parameter estimation.  Since the parameter is not known, how then does one 

proceed?  Consider how sample size planning is often initially taught.  Two of the more 

widely adopted introductory statistics texts in psychology (Gravetter & Wallnau, 2006;  

Howell, 2007) present three approaches to determining the population effect size to use 

as the basis of planning sample size: (1) assessment of the minimal effect size that is 

important to detect, (2) Cohen’s conventions, and (3) prior research. 

 1.  Minimally important effect size. If the metric of the dependent variable is not 

arbitrary (e.g., blood pressure, cholesterol level, etc.) and there is a clear and well-defined 

clinical therapeutic level on that dependent variable, then sample size planning can be 

based around that clinical level.  Mueller and colleagues present methods for power 

analysis to detect a specified level of change on the dependent variable that incorporates 

the uncertainty associated with estimates of the population standard deviation (e.g., 

Coffey & Muller, 1999;  Muller, LaVange, Ramey, & Ramey, 1992;  Taylor &  Muller, 

1995a). 

In psychology, the dependent variable often is not measured on such clean ratio 

level scales, clearly demarked therapeutic levels of change are not known, and 

consequently standardized effect sizes may be the only available metric.  The use of 
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standardized effect sizes in sample size planning is not without criticism (e.g, Lenth, 

2001).  In part, this criticism reflects concern about conflating the magnitude of an effect 

with actual importance – not unlike the confusion behind declaring that because two 

groups are statistically significantly different, that the difference between the two groups 

is therefore practically significant.  Yet in the absence of any viable alternative, the use of 

a standardized effect size often is the only option.  However, in this context, the choice of 

which standardized effect size is sufficiently important to detect is arbitrary and may vary 

across researchers.  This naturally leads to considering qualitative interpretations of the 

magnitude of standardized effect sizes and Cohen’s conventions. 

2.  Cohen’s conventions.  Cohen provided rough qualitative interpretations of 

standardized effect sizes corresponding to small, medium, and large effects.  For the 

standardized mean difference these are .2, .5, and .8, and for the correlation these are .1, 

.3, and .5, respectively.2  Examining statistical power for small, medium, and large effects 

is essentially equivalent to considering the entire power curve – the graph of how power 

changes as a function of effect size for a given sample size.  Examining a power curve, 

although informative about the power-effect size relationship, does not provide a 

systematic or a formal basis for how to proceed. For example, a researcher examining a 

traditional power curve that displays statistical power as a function of the effect size for a 

given sample size may conclude that power is quite reasonable for a medium to largish 

effect size.  Another researcher may look at the same curve and conclude that the study is 

grossly overpowered given a large effect size.  Yet another may conclude the study is 

grossly underpowered given a medium effect.  This is an extremely subjective decision-

making process with little formal justification for the choice of the effect size on which to 
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base decisions.  Indeed, many may not conduct power analyses at all given how 

subjective the process may appear. 

3. Prior research.  Following the recommendations of Wilkinson and the APA 

Task Force on Statistical Inference (1999), researchers have been encouraged to 

supplement the traditional p-values with effect size estimates and confidence intervals.  

Providing and examining effect sizes and corresponding confidence intervals helps shift 

the research question from solely asking, “Is the effect different from zero?” to inquiring 

as well, “What is the estimated magnitude of the effect and the precision of that 

estimate?” (see Ozer, 2007, for a discussion of interpreting effect sizes).  As a 

consequence of this shift in reporting practice, effect size estimates are more readily 

accessible.  When engaged in sample size planning for a future study, researchers often 

will have estimate(s) of the effect size at hand.  These may come from previously 

published research, extensive internal pilot studies, conference presentations, unpublished 

manuscripts, or other sources.  In this manuscript, we focus on this case – when there is 

some effect size estimate available that is relevant to the future study.  That such 

estimates should be used in the sample size planning process is almost self-evident. For a 

researcher to assert the goal of achieving, for example, sufficient statistical power for a 

small to medium effect size (e.g., " = .30) rests on the premise that a small-medium effect 

is actually meaningful.  Even if that premise is warranted, using that criterion may be 

grossly inefficient if there is evidence that the effect size is in reality larger.  This 

criticism holds as well for dependent variables measured on well-defined scales with 

clear therapeutic levels change – if there is evidence that the effect is substantially larger 

than the minimum change needed to produce a therapeutic effect, designing a study to 
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detect that minimum change may be inefficient and costly.  All available information 

should be used in the study design process. 

The question that arises naturally is how to use that effect size estimate.  As we 

will illustrate, naïvely using effect size estimates as their corresponding population 

parameters may introduce substantial bias into the sample size planning process.   

How Naïve use of Effect Size Estimates Biases Statistical Power 

 We now consider the impact of using effect size estimates in power calculations in 

a straightforward manner and how this can lead to bias in the actual average level of 

power.  Consider a hypothetical researcher who wishes to replicate a two-group study in 

which an intervention designed to change attitudes towards littering is implemented and 

littering behavior is subsequently measured.  The original study involved a total of 50 

participants (i.e., n = 25 per group) with an estimated standardized mean difference of d = 

.50 between the treatment and the control conditions.  It seems quite reasonable to use 

this effect size estimate to conduct a power analysis to determine the sample size needed 

for the subsequent study to have adequate statistical power.  Indeed, using this estimated 

effect size our researcher determines that 64 subjects per group are needed to have power 

of .80 under the assumption that " = .50. 

 At first glance it would seem logical to use the effect size estimates to guide power 

analyses in this manner.  Although sometimes sample estimates are above the population 

parameter and sometimes below, shouldn’t statistical power calculated on effect size 

estimates average to .80 across different sample realizations of the same population effect 

size?  Interestingly, the answer is no.  Even if the effect size estimator is unbiased with a 

symmetric sampling distribution, sample size calculations based on that effect size 

estimate can result in average statistical power that is substantially lower than the 

nominal level used in the calculations.  Bias in estimated statistical power from the use of 
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estimated effect sizes emerges from the asymmetrical relationship between sample effect 

size estimates and actual statistical power (e.g., Gillett, 1994, 2002; Taylor & Muller, 

1995b).  This bias may in fact be quite substantial.  Observed estimates below the 

population effect size will result in suggested sample sizes for future studies that result in 

power approaching 1.  In contrast, effect size estimates above the population value 

suggest sample sizes for future studies that drop to power down to !, the Type I error 

rate, which is also the lower bound for power.  This asymmetrical relationship results in 

average actual power across the sampling distribution of the effect size estimate that is 

less than the nominal power calculations based on each observed effect size estimate. 

To understand more clearly how average statistical power can differ from the 

nominal statistical power, consider the following thought experiment.  A large number of 

researchers all examine the exact same effect using the same procedure, materials, and 

drawing random samples from the same population where the effect size is " = .20 with 

n1 = n2 = 25.  Thus, each researcher has an independent sample from the sampling 

distribution of the standardized mean difference and uses this observed standardized 

mean difference to plan the required sample size necessary to achieve power of .80.  

Suppose one researcher observes d = .30 and uses this information as if it were the 

population effect size in a standard power analysis program, concluding that n should be 

176 per group in the subsequent study to achieve power of .80.  Another researcher 

observes d = .15 and determines that n should be 699 per group.  Yet another researcher 

observes d = .60 and determines that n should be 45 per group, and so on.  Researchers 

who observe a larger d will determine that they require a smaller sample size than those 

researchers who observe a smaller d.  Figure 1 graphs the sampling distribution of the 

standardized mean difference based on " = .20 and n = 25, the sample size each 
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hypothetical researcher determines is needed for the subsequent study when the observed 

effect size (d) is used as the population parameter to plan sample size, and finally the 

actual statistical power for each researcher’s subsequent study based on that sample size 

given that " is actually .20.  Only when the sample estimate is |d| = " = .20, the 

population standardized mean difference, does the actual power for a subsequent 

replication equal .80.  Thus large observed standardized mean differences result in low 

statistical power since researchers will conclude that they require a relatively small 

sample size for the subsequent study. 

On average, across the sampling distribution of the effect size estimate for this 

example, statistical power is only .61 – even though each sample size calculation was 

based on a nominal power of .80.  Average statistical power is calculated by numerically 

integrating over the product of the sampling distribution of the standardized mean 

difference and the power curve in Figure 1.  This bias in average statistical power is 

reduced both when the initial effect size estimate is measured with greater precision (e.g., 

based on larger sample sizes) and when the population effect size is larger.  This can be 

seen in Figure 2, which graphs the average statistical power across the sampling 

distribution of the standardized mean difference as a function of the population 

standardized mean difference and the sample size.   

The bias in statistical power is defined as the difference in the average statistical 

power across the sampling distribution and the nominal power used for each power 

calculation to determine sample size.  The implications of blindly using effect size 

estimates in statistical power calculations and the resulting bias warrant incorporating 

information regarding the sampling variability of the effect size estimate into the study 

design process. 
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Clearly, the simple use of an effect size estimate in the sample size planning 

process is not justifiable.  We now discuss how to use effect size estimates – and all of 

the information associated with the estimate – in the sample size planning process.   

A Formal Basis for Sample Size Planning using Effect Size Estimates 

A population effect size is a necessary input to the process when planning the 

sample size for a future study, whether the goal is a specified level of power or a 

specified level of precision for the effect size estimate.  The present manuscript adopts a 

Bayesian perspective on the population effect size during the study design process; 

however, inferences and/or estimation are based solely on the data collected in the future 

study.  Further discourse on amalgamating Bayesian and frequentist perspectives is 

deferred to the discussion. 

Adopting the Bayesian perspective for considering the population effect size is a 

pragmatic solution to the vexing problem of how to use estimates of effect sizes in the 

sample size planning process.  As we have seen, simply using the effect size estimate as a 

proxy for the parameter value results in levels of statistical power that are lower than 

specified in the planning process.  In contrast to examining a single parameter value, the 

Bayesian perspective instead provides a probability distribution of parameter values 

known as the posterior distribution.  The posterior distribution is the distribution of 

plausible parameter values given the observed effect size estimate and is a function of the 

likelihood of the observed data given a parameter value and the prior distribution of the 

parameter value.3  In other words, the posterior distribution provides a whole distribution 

of parameter values to consider during the planning process. 
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Using the Bayesian framework, we can therefore perform a statistical power 

calculation or accuracy in parameter estimation calculation based on a given sample size 

and examine the consequent distribution of statistical power or interval precision as a 

function of the posterior distribution.  In this way, the Bayesian framework provides a 

formal mechanism for incorporating the imprecision associated with the effect size 

estimate when planning sample size.  The specific steps are as follows:   

1.  Determine the posterior distribution of the population effect size parameter 

given observed data (e.g., an effect size estimate). The posterior distribution can be 

thought of as representing the uncertainty associated with the observed effect size 

estimate as it is the distribution of plausible values of the parameter given the observed 

data. 

2.  The posterior distribution is used as input in the study design process to 

determine the posterior predictive distribution of the test-statistic for a specified future 

sample size.  This represents the distribution of test-statistics for a given sample size 

across the plausible values for the population parameter. 

3.  The posterior predictive distribution of a test-statistic thus incorporates the 

uncertainty associated with estimated effect sizes.  It is straightforward to then determine 

the sample size needed to determine expected (average) statistical power or desired 

confidence interval width.  For instance, power is simply the proportion of the posterior 

predictive distribution that is larger in magnitude than the critical t-values. 

Expected power (EP), determined by averaging across the posterior distribution, 

provides a formal basis for making definitive statements about the probability of the 

future study reaching the desired goal (i.e., significance or accurate parameter 
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estimation).  However, by adopting a Bayesian perspective, there is an implicit change in 

the nature and interpretation of probabilities from conventional power calculations.  To 

illustrate, consider the earlier example where a researcher has an effect size estimate of d 

= .50 based on n = 25.  The traditional power calculation based on ! = d = .50 resulted in 

n = 64 to achieve power of .80.  This is a probability statement about repeatedly 

conducting the exact same experiment an infinite number of times on samples from the 

same population:  80 percent of future studies based on n = 64 will be significant if ! = 

.50.  In contrast, the Bayesian concept of expected power provides a different probability.  

As we illustrate shortly, with no additional information, using n = 64 results in expected 

power of only .67.  This is not a statement about what would happen if the researcher 

repeated the experiment an infinite number of times. Instead, expected power is a 

statement about the proportion of researchers, examining different topics, in different 

populations, using different techniques, who, based on the same observed effect size 

estimate of .50 and no other information (i.e., different parameter values are all 

essentially equally likely), all conduct a future study based on n = 64.  Sixty-seven 

percent of these researchers would obtain significant results in the future study.  This is a 

subtle conceptual shift in the definition of power that we revisit and expand upon later 

after illustrating the actual mechanics and process of calculating expected power. 

The difficulty in applying Bayes’ Theorem and calculating expected power lies in 

determining the prior distribution of the parameter.  Different choices of prior 

distributions yield different posterior distributions, resulting in the criticism that the 

researcher’s subjectivity influences the Bayesian analysis.  We first discuss and illustrate 
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the non-informative prior case before examining several techniques for incorporating 

additional information into the posterior distribution. 

 Power calculations based on an effect size estimate and a non-informative prior.  

Much work has been done to determine prior distributions that are not subjective, allow 

the observed data to dominate the calculation of the posterior distribution, and thereby 

minimize the impact of the prior distribution.  These non-subjective priors (see Bernardo, 

1997, for a deeper philosophical discussion) are also termed “probability matching 

priors” in that they ensure the frequentist validity of the Bayesian credible intervals based 

on the posterior distribution.  In some cases this probability matching may be asymptotic 

(e.g., see Datta & Mukerjee, 2004, for a review) whereas, as we will demonstrate, for the 

effect size estimates d and r this probability match can be exact (Berger & Sun, 2008;  

Lecoutre, 1999, 2007;  Naddeo, 2004).  In other words, as discussed in more detail in 

Biesanz (2010), the Bayesian credible intervals considered in this manuscript under the 

non-informative prior distribution correspond exactly to confidence intervals for effect 

sizes calculated following the procedures outlined in Cumming & Finch (2001), Kelley 

(2007), Steiger & Fouladi (1997), and Smithson (2001).  With an exact match between 

the traditional frequentist confidence interval and the Bayesian credible interval in this 

context, the posterior distribution represents exactly the same inferential information and 

uncertainty contained in traditional p-values.  Differences between the two perspectives 

are solely philosophical and interpretational. 

 Suppose that a researcher has an effect size estimate d, as in our attitude-behavior 

example, or an observed correlation r, but no other sources of information to guide the 

power analysis such as relevant meta-analyses or comparable studies on the same topic.  



  Sample Size Planning 15 

Under a non-informative prior, the posterior distribution of the standardized mean 

difference (") is 

  ,       (4) 

where z is a standard normal variate (i.e., z ~ N(0,1)),  ~  with 

, and z and  are independent with “~” interpreted as “has the 

same distribution as.”  The expression of the posterior distribution in (4) is a randomly 

constructed distribution (see Berger & Sun, 2008); all elements in this expression are 

either constants or standard reference distributions (normal and chi-square).   

 The posterior distribution of the effect size parameter represents the distribution of 

plausible values for the population effect size.  The posterior distribution thus captures 

the imprecision associated with the effect size parameter given the observed data.  

However, for sample size planning, the distribution of interest is the posterior predictive 

distribution, ; see Table 1B.  This represents the distribution of future 

hypothetical observed t-statistics based on a specified new sample size (dfnew), which is a 

function of the posterior distribution of the effect size parameter.  The posterior 

predictive distribution incorporates the uncertainty associated with the estimate of the 

effect size by integrating over the posterior distribution of the effect size parameter. 

 The posterior predictive distribution of the t-statistic is critical for sample size 

planning as it provides a direct route for determining expected statistical power (EP): 

  .       (5) 

 Expected statistical power is the proportion of the posterior predictive distribution 
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that is more extreme than the critical values based on the standard (central) t-distribution 

given specified !.  Expected power depends on the choice of sample size for the future 

study.  Increasing the sample size will increase statistical power; consequently, a 

statistical power calculation for planning sample size involves determining the requisite 

sample size (i.e., dfnew) necessary to produce the desired expected power.  The goal in the 

sample size planning process may be to determine dfnew such that expected power is .80.  

A precise empirical solution to Equation (5) given dfnew is straightforward, as the posterior 

predictive distribution is a known function of standard reference distributions (see Table 

1B). 

 To illustrate, Figure 3 presents the posterior predictive t-distributions for two 

different sample sizes (n = 64 and n = 130 per group) based on the posterior distribution 

of effect sizes from our attitude-behavior littering example where we estimated d = .50 in 

a study where n = 25.  A standard statistical power calculation based on the assumption 

that " = d = .50 suggest that the sample size of 64 per group will result in power of .80.  

However, on average across the distribution of plausible values for the population 

parameter, the actual statistical power is only .67.  That is, on average across the posterior 

distribution of the effect size, only 67 percent of future studies based on a sample size of 

64 will result in a rejection of the null hypothesis.  

 What sample size then will produce a desired level of power such as .80?  The dfnew 

needed to achieve a specified level of expected power as a function of an observed effect 

size can be determined by systematically examining a range of sample sizes and 

modeling the nonlinear relationship between expected power using a nonparametric 

smoother such as a loess function.  This represents a power curve that incorporates the 
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uncertainty associated with the effect size estimate. Figure 4 illustrates such a power 

curve for the present example.  If needed, this procedure can be further refined by 

adapting stochastic approximation (e.g., see Robbins & Monro, 1951;  Tierney, 1983) to 

solve Equation (5) with a specified degree of precision.4  In the present example, only 

when the sample size is increased to n = 130 will 80% of future studies result in a 

rejection of the null hypothesis given the uncertainty associated with the effect size 

estimate. 

 Non-informative prior for the correlation.  Distributions based on the correlational 

metric often present computational difficulties (see Naddeo, 2004, for the development 

and expression of the posterior distribution of the correlation under a non-informative 

prior).  Consequently, the correlation is often re-expressed through the Fisher r-z 

normalizing transformation to simplify matters considerably (e.g., see Fouladi & Steiger, 

2008, for more analytical details).  However, for the present purposes it is both desirable 

as well as feasible to keep all analytical results in the original correlational metric.   By 

adapting Shieh’s (2006) expression for the sampling distribution for the noncentral t-

distribution for the correlation of a randomly sampled predictor as a two stage 

distribution, the distributions for the correlation presented in Tables 1A and 1B follow 

(see also Berger & Sun, 2008; Biesanz, 2010).  The difference in the expression of the 

noncentrality parameters for the correlation versus the standardized mean difference 

arises from considering the predictor to be randomly sampled as opposed to fixed.  This 

introduces extra variability into the sampling distribution of the test-statistic that must be 

incorporated into the power calculation, and consequently, the posterior predictive 

distribution for the t-test for the correlation is different from the standardized mean 
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difference (see Table 1B and Biesanz, 2010, for further discussion of the implications of 

fixed versus random predictors).  The logic and process of using Equation (5) remain 

unchanged – the goal is still to determine the sample size needed in a future study for a 

specified level of expected power. 

 The process of using a non-informative prior is relatively straightforward.  Routines 

in R to estimate the sample size needed to achieve a given level of statistical power based 

on an observed effect size estimate and all of the examples presented in this manuscript 

are available from the authors.  We also provide a rough guide to use to adjust the results 

from traditional power analysis software.  Table 2 presents the adjustment (multiplicative 

factor) needed for sample size planning when power of .80 is desired.  For example, 

given an observed standardized mean difference of .30 based on n = 20, traditional power 

analysis programs suggest n = 176 is required for power to be .80 in a subsequent study.  

However, after incorporating the uncertainty associated with the effect size estimate, 

sample size of n = 176 # 2.83 = 498 is required to achieve average power of .80.  Note 

that for very small and imprecise effect sizes (e.g., d = .10 with n = 10), the multiplicative 

factor is less than 1.  This occurs when most of the posterior distribution is greater in 

magnitude than the observed effect size. 

Power calculations based on effect size estimates and prior information 

 It is rare to have an effect size estimate without any additional prior information.  

For example, one may have conducted several other relevant studies which may or may 

not already be published.  Alternately, with the increasing use of meta-analysis as a 

quantitative tool to review a literature, substantial information regarding effect sizes for a 

particular field is now commonly available.  To illustrate how additional information may 

be used to better estimate the posterior distribution of the effect size, we first consider the 
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ideal case where the population distribution of effect sizes is already known before 

examining methods to incorporate the uncertainty associated with the estimate of the 

distribution of effect sizes in addition to that associated with the effect size estimate(s) at 

hand. 

Known population distribution of effect sizes.  Consider the ideal and hypothetical  

situation where we know that the distribution of effect sizes in a particular literature to be 

 and we have an observed effect size estimate d0 =  with sampling variance .  

We present this case simply to familiarize readers with the computational mechanics 

before considering the usual case where distributions of effect sizes are estimated, not 

known.  It follows from Bayes’ Theorem that the posterior distribution of plausible effect 

sizes for the effect size estimate, , is , where 

.        (6) 

 Incorporating prior information from a meta-analysis changes the posterior 

distribution from the case where there is no existing prior information and a non-

informative prior is used in two important ways.  First, the mean of the posterior 

distribution is shifted or “shrunk” towards the mean of the prior distribution (µ).  Second, 

the variance of the posterior distribution is reduced relative to the sampling distribution 

of the effect size estimate.  The net result of incorporating prior information is generally a 

substantial increase in the precision of the posterior distribution as we illustrate shortly.  

This has immediate benefits in sample size planning as the probability of extreme effect 

sizes, both large and small, is reduced when calculating expected power. 

However, incorporating prior information from relevant studies into the power 

analysis rests on the presumption that the effect size estimate under consideration is 

exchangeable with those from the prior studies.  This assumption of exchangeability is 
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met when our opinion of each effect size prior to observing the data is exactly the same 

(de Finetti, 1974).  Formally, a sample of effect sizes is exchangeable if their joint prior 

probability distribution remains invariant under permutation of the specific studies.  In 

other words:  If, prior to conducting the study or observing its effect size, we have no 

reason to believe that this particular study should have a larger or smaller effect size than 

those from the meta-analysis, the assumption of exchangeability will be reasonable (see 

Draper, 1987; Draper, Hodges, Mallows, & Pregibon, 1993; Gelman, Carlin, Stern, & 

Rubin, 2004, pp. 121-124).  If there is specific information that leads one to believe that 

this particular study is not essentially a random sample from the distribution of effect 

sizes estimated from the meta-analysis (e.g., this study involves a population of 

participants who tend to generate larger effect sizes), then this information can be 

incorporated directly into the meta-analysis as a predictor of the mean effect size 

resulting in the assumption of partial or conditional exchangeability after incorporating 

this information.  Note that this assumption of exchangeability does not imply that the 

effect sizes are all equal – there can be systematic differences between studies resulting in 

substantial random effects variance – just that we have no information available before 

conducting our study as to where on the random effects distribution a particular study is 

likely to lie. 

 Assuming that the assumption of exchangeability is reasonable, actually 

incorporating prior information in practice is slightly more complex than the ideal case 

where the prior distribution is known.  A meta-analysis within a particular research 

context provides only estimates of the mean effect size of a literature at  with random 

effects variance .  Naïvely using the estimates from a meta-analysis to calculate the 

posterior distribution ignores the uncertainty associated with the meta-analytic estimates 
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of  and  and therefore underestimates the variance in the posterior distribution 

(Morris, 1983).  We consider two approaches to estimating the posterior distribution of 

an effect size estimate given only estimates of the prior distribution:  Empirical Bayes 

(EB) and Hierarchical Bayes (HB). 

 Empirical Bayesian posterior distributions.  Following Morris (1983), there is a 

long research tradition of correcting the variance of the posterior distribution to reflect 

the uncertainty associated with using estimates of the prior distribution to provide 

confidence intervals (e.g., Carlin & Gelfand, 1990, 1991;  Datta, Ghosh, Smith, & Lahiri, 

2002;  Laird and Louis, 1987, 1989;  see also Cox, 1975).  Laird and Louis (1987, 1989) 

developed a parametric bootstrap approach to estimating the posterior distribution where 

samples are randomly generated based on the estimates of the prior distribution, a naïve 

posterior distribution is calculated for each bootstrap, and then the posterior distribution 

is calculated as the mixture of each of the bootstrapped naïve posterior distributions.  

Carlin and Gelfand (1990, 1991) modified this approach to provide estimates of the 

posterior distribution that are conditional for an observed effect size as well as a 

correction to calibrate credible intervals if these are desired.  Implementing this approach, 

although computationally intensive, requires only the estimates of the prior information 

(i.e., the random effects estimates obtained from the meta-analysis) and the precision of 

the individual studies that were involved in the meta-analysis.  The latter is provided by 

either the average study sample size or, ideally, the full set of sample sizes of the studies 

included in the meta-analysis. 

To illustrate this approach, first determine the mean and random effects variance 

 from a meta-analysis based on m studies.  Define d0 as the observed effect size 
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estimate that we wish to use as input for the sample size planning process.  The specific 

steps are: 

1.  Draw a random sample of size m from  to produce  (j=1, …, m).  

These are the latent effect sizes. 

2.  For each latent effect size draw an “observed” test statistic from the noncentral 

t-distribution with noncentrality parameter  where .  Next, 

convert the noncentral t to a d to produce the "observed" effect sizes  (j=1, …, m) for 

the parametric bootstrap.  Note that  and  are the sample sizes associated with 

study j in the meta-analysis.  If the exact sample sizes are unavailable, simply use the 

range of sample sizes present in the meta-analysis, ensuring that the median sample size 

roughly corresponds to that reported in the meta-analysis. 

3.  For the set of m+1 effect sizes  estimate  and .  This then allows 

the computation of the posterior distribution for the effect size estimate based on the 

bootstrap as  (see Equation (3) in Footnote 

3). 

4.  Following Laird & Louis (1987, Equation 11), repeat steps 1-3 a total of k 

times and estimate .  This represents a mixture of the 

posterior distributions derived in step 3, which may be approximated by drawing random 

samples of the same size from each of the k different bootstrapped posterior distributions 

to create an empirical approximate parametric bootstrapped posterior distribution.5  With 
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a sufficiently large value of k (e.g., 1000 or more), the empirical approximation of 

 will be quite stable and the computational feasibility of this approach is 

reasonable on a desktop computer. 

 To illustrate the empirical Bayesian approach, consider the attitude-behavior 

littering example.  A recent meta-analysis of the attitude-behavior relationship by Webb 

and Sheeran (2006), based on 47 studies, provides a mean SMD of  with 

variance .6  Our observed effect size estimate d = .50 has an estimated variance 

of .086 under the non-informative prior.  In contrast, the parametric bootstrap empirical 

Bayesian approach results in an approximate posterior distribution with mean  = .405 

with variance = .037.  Incorporating the prior information provided by the meta-analysis 

shifts the mean effect size estimate towards the average provided by the meta-analysis as 

well as substantially reducing the variability in the posterior distribution. 

With this empirical approximate posterior distribution, we can first generate the 

posterior predictive distribution, , which incorporates the prior 

information from the meta-analysis.  This represents the mixture of noncentral t-

distributions based on the posterior distribution calculated in step four (i.e., for every  

generated in Step 4, estimate  and then average over the resulting 

predicted t-distributions).  The resulting estimate of the posterior predictive distribution is 

then used to solve (5) to estimate the sample size required for a given power.  In the 

present example, a sample size of n = 160 per group is needed to achieve average 

statistical power of .80.  The required sample size increased in this example as the 

posterior distribution has shifted towards smaller effect sizes, albeit with smaller 
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variability, through the inclusion of prior information.  Note that if our observed effect 

size estimate had been instead below the meta-analytic mean effect size, the suggested 

sample size would generally have decreased instead. 

 Hierarchical Bayesian posterior distributions.  A full Bayesian analysis places a 

prior distribution on the mean and variance of the effect sizes in the literature (i.e., a 

hyperprior).  Then, using Markov Chain Monte Carlo (MCMC) methods, the posterior 

distribution of the effect size can be numerically estimated (see Casella & George, 1992; 

Gelman et al., 2004, for introductions to MCMC methods).7 

Just like the empirical Bayes methods, the hierarchical Bayesian approach 

provides a large sample of values from the posterior distribution of the effect size of 

interest that can be used to calculate the posterior predictive distribution and thus 

expected power.  The hierarchical Bayesian approach results in a mean estimate of  

= .404 with variance .0397 for the littering initial study across 10,000 draws from the 

posterior distribution.  Using this estimated posterior distribution to determine the 

posterior predictive distribution (see Table 1B) to solve Equation (5) results in a sample 

size of 172 individuals per group need to achieve adequate power of .80 across the 

posterior distribution.  Figure 5 presents the posterior distributions for the attitude-

littering example based on (a) no prior information and (b) estimated posterior 

distributions derived from empirical and hierarchical Bayesian approaches.  In this 

example there is striking convergence between the empirical and hierarchical Bayesian 

approaches to the posterior distribution. 

The hierarchical Bayesian approach can also be easily implemented when there 

are only several other relevant studies that can be used for prior information.  To 
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illustrate, consider the small meta-analysis presented in Dunn, Biesanz, Human, and Finn 

(2007) on the effects of self-presentation on positive affect within social interactions.  

Across the 5 studies in this manuscript, the mean effect size was  = .44.  Suppose one 

were interested in replicating Study 2b, where self-presentation was manipulated directly 

for romantic partners.  The observed effect size was d = .77, with CI.95 = [.15, 1.35], and a 

naïve power calculation suggests that 28 participants are needed in each condition to 

achieve adequate statistical power of .80.  Simply incorporating the effect size 

uncertainty by using the algorithm presented earlier for the non-informative prior 

suggests increasing this sample size to 40 per group.  However, by using the other 4 

studies as prior information within a hierarchical Bayesian analysis, we obtain an 

estimate of the posterior distribution of  = .576 with variance .073 for Study 2b and 

determine instead that 80 participants per group are required to ensure adequate average 

statistical power for this study.  Incorporating the information from the other 4 studies 

dramatically reduces the uncertainty associated with the effect size for Study 2b.  Indeed, 

after incorporating the prior information we can estimate that the expected power under 

the naïve power calculation that resulted in n = 28 is instead only .53.  Figure 6 presents 

the expected power as a function of the sample size based on the posterior distribution of 

the effect size under the hierarchical Bayesian model. 

Note that in conducting a hierarchical Bayesian analysis, a number of decisions 

need to be made up front, even in a relatively straightforward model such as a 

hierarchical normal model.  For instance, the properties of the Markov chain are 

asymptotic and it may take many iterations to converge to the proper posterior 

distribution.  Consequently the first number of iterations (e.g., 10,000 in the present 
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examples) are discarded.  Sequential draws from the chain will not be independent, so the 

chain may be “thinned” by taking only every ith observation where i=100 in the present 

examples.  Distributions other than normal may be presumed for the posterior and prior 

distributions.  For instance, a robust hierarchical Bayesian analysis may place a t-

distribution on the prior random effects (e.g.,  with v df).  Such a robust 

Bayesian analysis places a “fatter” tail on the prior distribution of random effect sizes and 

consequently does not “shrink” the observed effect size down to the mean effect size as 

much as the normal distribution; in the present examples, this will lead to an estimate of 

fewer participants to achieve adequate statistical power.  Given all of these decisions, the 

hierarchical Bayesian analysis requires careful attention to ensure that the model has 

converged on the posterior distribution of interest and that the conclusions are not 

inordinately sensitive to necessary decisions such as the nature of the prior and posterior 

distributions.  Nonetheless, a full hierarchical Bayesian analysis represents a well-

justified and attractive approach to estimating the posterior distribution when feasible. 

Accurate Parameter Estimation based on Effect Size Estimates 

Instead of ensuring an adequate probability of rejecting a false null hypothesis, 

estimating the effect size with a specified degree of precision may be the primary impetus 

for conducting the future study.  Frameworks for determining the sample size needed to 

achieve a certain expected level of precision within a subsequent study have been 

developed and are a natural parallel to a focus on estimating effect sizes and presenting 

confidence intervals (e.g., see Jiroutek, Muller, Kupper, & Stewart, 2003; Kelley, 2008; 

Kelley, Maxwell, & Rausch, 2003;  Kelley & Maxwell, 2003;  Kelley & Rausch, 2006).  

Prior information can be included within this question as well (e.g., see Santis, 2007).  
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Since confidence interval width depends as well on the population effect size, 

uncertainty in effect size estimates can impact sample size planning in this context.  We 

now illustrate how to plan the sample size for a future study to achieve a specified degree 

of precision while incorporating the uncertainty associated with an initial effect size 

estimate.  Define $ as the width of the 1-! equal-tailed confidence interval based on an 

observed t-statistic as follows: 

,      (10) 

where  converts the noncentrality parameter back to the effect size of interest (e.g., 

! or ") and %upper and %lower are defined as 

       (11) 

and 

.       (12) 

In other words, %upper and %lower represent the (1 - !/2) and the !/2 quantiles, 

respectively, of the posterior distribution of the noncentrality parameter under a non-

informative prior distribution as defined in Tables 1A and 1B.  As discussed in Biesanz 

(2010; see also Berger & Sun, 2008;  LeCoutre, 2007), this approach results in the same 

confidence intervals as those derived through pivoting the cumulative distribution 

function (e.g., see Cumming and Finch, 2001;  Kelley, 2007;  Steiger and Fouladi, 1997;  

Smithson, 2003;  Steiger, 2004). 

The expected confidence interval width for a future study given a specified 

sample size can be determined through the posterior predictive distribution of the test-
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statistic.  For the non-informative prior distribution, the expected width is 

     (13) 

and when prior information is incorporated into the posterior distribution, the expected 

with is 

.   (14) 

For each t-value in the posterior predictive distribution, we can determine the 

resulting effect size confidence interval based on that (unobserved) t-statistic.  The 

expected width is the average of the resulting widths across the posterior predictive 

distribution.  Because the expected confidence interval width is a monotonic function of 

sample size – intervals become more precise with larger samples – equations (13) or (14) 

can be solved to determine the sample size necessary to achieve a specified expected 

width. 

Quantiles for the future confidence intervals can easily be obtained as well.  The 

width of a confidence interval has a monotonic relationship with the magnitude of the 

estimated noncentrality parameter (more specifically, holding the sample size constant, $ 

increases as  increases and decreases as  increases).  As a consequence of this 

relationship, the quantiles of the absolute value of the posterior predictive distribution of 

the test statistic (i.e., ), when converted to interval width ($), provide the quantiles 

for the future study’s effect size confidence interval width. 

These quantiles can be used to specify the degree of certainty that the future 

confidence interval will be no wider than desired (e.g., see Kelley & Rausch, 2006).  



  Sample Size Planning 29 

Figure 6 illustrates the median confidence interval width for different sample sizes based 

on the effect size from Study 2b from Dunn, Biesanz, Human, and Finn (2007) and using 

the informative prior.  The standardized mean difference is relatively insensitive to 

imprecision in the parameter estimate (e.g., see as well Kelley & Rausch, 2006, Tables 1-

3).  For instance, for n = 80, which is when average power is .80, the median 90% 

confidence interval width  = 0.530 which itself has CI.80 = [.521, .552].  Thus, for this 

sample size, we are 90% confident that a future study will result in a 90% confidence 

interval whose width ( ) is less than .552.  This would suggest that if the goal of the 

study was to more precisely estimate the effect size, a larger sample size would be 

required.  Equations (13) for the non-informative prior or equation (14) for the 

informative prior can be solved for expected confidence interval width or adapted to 

examine quantiles.  For instance, a sample size of 151 in this example would result in a 

90% confidence interval around the effect size estimate whose width ( ) is less than .40 

with confidence of 90%. 

Conclusion and Discussion 

 The present approach provides a formal basis for planning sample size.  By 

focusing on prior research when available and the uncertainty surrounding their effect 

size estimates, subjectivity in the sample size planning process is greatly minimized.  If 

effect size estimates are routinely used in power calculations without accounting for their 

uncertainty, statistical power will be generally substantially lower than the nominal 

statistical power.  However, by incorporating information on the distribution of plausible 

effect sizes – either with or without prior information – sample size planning can be 

substantially improved and researchers may increase their confidence that, on average, 
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they may better achieve their desired level of statistical power or confidence interval 

width. 

The procedures outlined in the present manuscript may lead to suggested sample 

sizes that are substantially larger than those from the naïve use of the effect size estimate 

(e.g., see Table 2).  The imprecision in the initial effect size estimate may have a strong 

influence on the suggested sample size.  As effect size estimates become more precise, 

the procedures outline in the present manuscript converge to those from standard 

statistical power packages treating the effect size estimate as the population parameter.  If 

the initial effect size estimate is large and imprecise, although it may be tempting to run 

only the few participants suggested by the naïve power calculation, many more 

participants may be needed given the paucity of information present on the actual effect 

size. 

Mixing Frequentist and Bayesian Thinking in the Sample Size Planning Process 

The present manuscript adopts a Bayesian perspective on the population effect 

size during the study design process; however, inferences and/or estimation are based 

solely on the data collected in the future study.  This represents an amalgam of Bayesian 

and frequentist perspectives and follows the spirit of the recent American Statistical 

Association Presidential addresses from both Efron (2005) and Little (2006).  Similar 

blended perspectives are found as well in Bayarri and Berger (2006), Casella (2007), 

Gelman, Meng, and Stern (1996), Rubin (1984), and Rubin and Stern (1998).  The 

present manuscript is focused on determining the sample size for a single prospective 

study where inferences will be made solely based on that future study.  This still 

represents the modal inferential design in psychology. 
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Adopting the Bayesian perspective allows the determination of the probability of 

achieving the desired study goals without the necessity of specifying the exact population 

parameter.  Instead we consider the entire distribution of plausible population parameter 

values given an observed effect size estimate to compute statistical power and accurate 

parameter estimation.  The benefit of not having to specify the exact parameter value 

during the sample size process comes at the cost of having to specify a prior distribution.  

The use of non-informative priors when there really is no other information or 

informative priors such as from relevant meta-analyses both provide reasonable objective 

and formal bases for planning future studies. 

Empirical Bayes (EB) versus Hierarchical Bayes (HB) and Considerations of 

Exchangeability 

 When prior information such as a meta-analysis or a series of related studies is 

available, both EB and HB approaches are viable options for incorporating this prior 

information into study design.  The HB approach is theoretically elegant and the 

preferred approach when feasible.  However, implementing the HB analysis requires 

individual effect size estimates from each of the studies in the meta-analysis as well as 

the variance estimates from each individual study.  This raw information is not always 

available in published meta-analyses.  Even when this information is available, the HB 

approach may require recreating a complex analytical model to account for publication 

bias as well as monitoring for convergence; consequently, this approach may require 

experience, and some expertise in the use of these estimation techniques (e.g., censoring 

parameters to account for publication bias; see Eberly & Casella, 1999) may be needed.  

For example, Shadish and Baldwin (2005) examined the effectiveness of behavioral 
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marital therapy and estimated the effectiveness at ( ) across 30 

studies.  However, after accounting for publication bias, these estimates changed 

considerably to ( ).  The HB approach in this case would require 

including censoring parameters and may present challenges in the estimation.  In contrast, 

the EB approach requires only the bottom-line output from the meta-analysis after 

accounting for the publication bias (that is, the mean and random variance estimates of 

studies included in the meta-analysis) along with rough study design data to provide an 

approximation of the posterior distribution.  The EB approach does not require 

monitoring for convergence and is readily extendable to generalized linear models which 

may require considerable expertise to implement in the HB approach.  The EB approach 

may often be much easier to implement and consequently preferable from a practical 

perspective. 

Limited empirical research comparing these approaches has found that they 

provide comparable results (e.g., MacNab, Farrell, Gustafson, & Wen, 2004).  Indeed, in 

the present attitude-littering example these approaches yield essentially identical results 

using the Webb and Sheeran (2006) meta-analysis.  In sum, the HB approach is to be 

preferred when practical given the theoretical justification for the approach, but the EB 

approach may provide an excellent and easily implementable approximation. 

Alternative Approaches and Design Considerations 

 Although the focus of the present manuscript has been on statistical power and 

confidence interval width for inferences based on a single prospective study, alternative 

approaches and frameworks have been explored in the literature.  For example, Muller 

and Pasour (1997) explore the impact on power when the effect size is considered fixed 
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and the variance is estimated (see also Coffey & Muller, 1999).  Furthermore, if the costs 

of running participants and the costs and benefits of different outcomes can be 

determined, Equation (5) is easily expanded to determine the sample size required to 

maximize expected utility (e.g., Lindley, 1997).  This approach is conceptually elegant 

and worthy of serious consideration for applied research when estimates of the utility of 

an effective treatment can be determined.  For basic research, the utility of detecting a 

significant effect may be much less readily quantifiable and thus this approach may not 

be easily implemented. 

 In conclusion, when determining sample sizes for subsequent studies, all of the 

information available regarding effect sizes should enter into the calculation.  Most 

importantly, this includes the uncertainty associated with effect size estimates.  We 

provide accessible routines and software to help make these calculations that illustrate all 

of the examples presented in this manuscript.  We hope that the disparity between the 

expected power under naïve power calculations and the nominal statistical power 

provides the impetus to re-examine standard approaches to sample size determination and 

to implement formal approaches for incorporating existing information in the sample size 

planning process. 
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Table 1A.  Definitions and distributions for the standardized mean difference (SMD) and the correlation. 

Term SMD Correlation   

Definitions, Notation, and Relationships 

   Effect size parameter   

   Effect size estimate   

   Degrees of freedom (!)   

   Observed t-value (tobs)   

   Noncentrality parameter (!)   
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Table 1B.  Distributions for the standardized mean difference (SMD) and the correlation. 

Distribution SMD Correlation    

   Sampling Distribution:   

   Posterior Distribution:   

   Posterior distribution of the effect size   

   Posterior predictive:    

        

Note: z ~ N(0,1) is a standard normal variate,  ~ , ! are the df  associated with the observed test-statistic 

(tobs), !new are the df associated with a potential future study, and z and  are independent with “~” interpreted as “has the 

same distribution as.”  



  Sample Size Planning 45 

Table 2.  Sample size multipliers based on a non-informative prior for traditional power 

analysis calculations at power of .80 when an effect size estimate treated as the 

population parameter. 

Observed   Sample Size for the Observed Effect Size 

Effect Size 10 20 30 40 50 60 70 80 90 100 

SMD 

.10  0.36 0.68 0.97 1.23 1.46 1.67 1.85 2.02 2.16 2.29 

.20  1.23 2.02 2.50 2.75 2.86 2.87 2.82 2.73 2.63 2.52 

.30  2.16 2.83 2.85 2.64 2.39 2.17 2.00 1.86 1.75 1.66 

.40  2.77 2.77 2.34 2.00 1.77 1.62 1.52 1.45 1.39 1.34 

.50  2.91 2.32 1.85 1.61 1.46 1.38 1.29 1.25 1.22 1.19 

.60  2.73 1.91 1.56 1.40 1.31 1.25 1.21 1.18 1.16 1.14 

.70  2.41 1.65 1.40 1.29 1.22 1.18 1.16 1.14 1.12 1.11 

.80  2.10 1.49 1.30 1.21 1.17 1.14 1.12 1.11 1.08 1.08 

.90  1.87 1.38 1.24 1.17 1.14 1.11 1.10 1.08 1.07 1.06 

1.00  1.70 1.30 1.19 1.15 1.11 1.10 1.07 1.06 1.06 1.05 

Correlation 

.10  0.53 1.03 1.30 1.99 2.27 2.48 2.64 2.75 2.83 2.87 

.20  1.88 2.75 2.92 2.78 2.56 2.33 2.12 1.97 1.85 1.74 

.30  2.84 2.72 2.21 1.86 1.65 1.52 1.43 1.37 1.32 1.28 

.40  2.77 1.88 1.45 1.32 1.25 1.20 1.17 1.15 1.13 1.12 

.50  1.87 1.36 1.24 1.17 1.14 1.11 1.09 1.08 1.07 1.06 

.60  1.58 1.26 1.16 1.11 1.09 1.07 1.06 1.05 1.05 1.04 

.70  1.53 1.22 1.14 1.10 1.08 1.06 1.05 1.05 1.04 1.04 

Note:  Sample size is n per group for the standardized mean difference.  If the observed effect 

size is d = .50 based on n = 20 per group, traditional power analyses suggest n = 64.  Instead, use 

n = 2.32 ! 64 = 149 per group (rounded) under the non-informative prior. 
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Figure 1.  Statistical power as a function of using an observed standardized mean 

different to plan sample size for a future study.  Graphed are (a) the sampling distribution 

of a small standardized mean difference (population SMD " = .20, n = 25), (b) the natural 

log of the sample size required to achieve power of .80 when the observed sample SMD 

is treated as the population effect size, and finally (c) the actual statistical power for 

replication using that sample size given that in fact " = .20.  Larger observed values of 

the SMD result in lower sample sizes, which, in turn, results in power less than .80.  Only 

when the observed sample estimate corresponds exactly to the population parameter (i.e., 

d = " = .20) does the sample size planning process using solely the observed effect size 

result in statistical power of .80. 
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Figure 2.  Average statistical power across the sampling distribution given a specified 

population standardized mean difference (SMD; ") and sample size per group (n) when 

the observed standardized mean difference from the sampling distribution is used as the 

basis for planning sample size for the next study specifying power of .80 with # = .05, 

two-tailed.  Average statistical power was empirically estimated based on a simulation of 

20,000 draws from the sampling distribution for each combination of sample size and 

SMD – n ranged from 10 to 200 by increments of 10 and " ranged from .05 to 1.0 by 

increments of .05.  The graphed response surface is the nonparametric loess relationship 

between n, ", and average power across the sampling distribution as in Figure 1. 
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Figure 3.  Posterior predictive distributions using sample sizes of n = 64 and n = 130 per 

group based on an observed d = .50 with n = 25 and a non-informative prior.  Note that 

each posterior distribution has imperceptibly different critical t-values as they differ in 

their degrees of freedom (+/-1.97897 versus +/-1.96920). 
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Figure 4.  Expected power as a function of sample size under a non-informative prior 

distribution for the attitude-behavior example (d = .50, n = 25).  A sample size of n = 130 

is required to achieve expected power of .80 whereas n = 64 results in expected (average) 

power of .67. 
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Figure 5.  Estimated posterior distributions based on a non-informative prior, empirical 

Bayes (EB), and hierarchical Bayes (HB) for the attitude-behavior example effect size (d 

= .50, n = 25) where prior information is obtained from Webb and Sheeran (2006; Table 

1). 
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Figure 6.  Expected (average) power as a function of sample size for Study 2b (d = .77, n 

= 23;  Dunn, Biesanz, Human, & Finn, 2007) using the posterior distribution produced 

under a hierarchical Bayesian analysis based on the other 4 study effect sizes.  A sample 

size of n = 80 is required to achieve expected (average) power of .80 whereas the n of 28 

from the naïve power calculation results in expected (average) power of .53.  Graphed as 

well is the median 90% confidence interval width as a function of sample size across the 

posterior predictive distribution. 
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Footnotes 

 1 We will assume that # = .05 and that tests are two-tailed unless otherwise 

specified.  Sample size (n1 and n2) refers to the number of observations per group for the 

standardized mean difference, whereas n refers to the number of observations when 

discussing the correlation. 

 2 Psychological constructs are often measured on arbitrary scales; consequently, it 

is helpful to express the magnitude of a treatment or relationship between variables in an 

effect size metric that is free of the actual measurement scale used in a particular study.  

We consider in detail two of the more commonly used standardized effect size measures, 

the standardized mean difference (SMD) and the correlation.  The population 

standardized mean difference is defined as 

  ,          (1) 

where µ1 is the population mean of Group 1, µ2 is the population mean of Group 2, and $ 

is the population standard deviation which is assumed here to be equal in each group.  

The population standardized mean difference is estimated by 

  ,          (2) 

where  and  are the means of Groups 1 and 2 with sample sizes n1 and n2, 

respectively, and s is the pooled standard deviation.  For the correlation between two 

variables X and Y, we consider the standard Pearson correlation whose population value 

is defined as  and is estimated by r = sXY/(sXsY) with sample size n where 

 (sXY) is the population (sample) covariance between the X and Y with standard 
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deviations  (sX) and  (sY), respectively. 

 Although it is possible to transform the standardized mean difference into the 

correlational metric and vice versa (e.g., see Rosenthal, 1994), we assume that the 

standardized mean difference represents a fixed effects model in that the levels of Groups 

1 and 2 are determined by the experimenter.  In contrast, for the correlation we assume 

that the levels of the predictor X are randomly sampled.  This distinction results in effect 

size measures that are not interchangeable for the purposes of sample size planning.  All 

formulae, definitions, and distributions are presented for ease of reference in Tables 1A 

and 1B. 

3  Specifically, the posterior distribution of the standardized mean difference, 

given observed standardized mean difference ( ), is formally derived from Bayes’ 

Theorem as follows: 

,       (3) 

where  is the posterior distribution of the parameter given our observed 

standardized mean difference,  is the likelihood function of the standardized 

mean difference given the population value ", is the prior distribution of the 

population standardized mean difference, and a is the normalizing constant where 

. 

 4 For the non-informative prior it is possible to directly solve expected power 

through a more traditional Bayesian analysis.  Define H(") as the statistical power to 

detect effect size " with fixed sample size n.  Then expected power (EP; Gillett, 1994; 
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Lindley, 1997) is  where  is defined in (3).  We reflect 

the lack of prior knowledge with the non-informative prior  (Datta & 

Ghosh, 1995a, 1995b; Datta & Sweeting, 2005; Ghosh & Yang, 1996).  Note that this 

particular non-informative prior distribution is known as a Jeffrey’s prior, which is 

proportionally equivalent to the square root of the Fisher information for the standardized 

mean difference. This approach can be solved analytically using numerical integration 

and provides essentially equivalent answers to (5) for the examples examined in the 

present manuscript.  The direct Bayesian solution, although appealing in its precision, 

may be difficult to estimate for small effect sizes and/or small sample sizes whereas the 

stochastic approximation solution will always provide an answer and is a more stable 

method of estimation. 

5 Samples from the posterior distribution  can be determined 

through direct approximation (i.e., see Gelman, Carlin, Stern, & Rubin, 2004, pp. 283-4) 

using the following steps.  First, determine a large and very fine grid of evenly spaced 

values on the noncentrality parameter % (e.g., from -25 to 25 by increments of .02).  Next, 

determine the density of the prior distribution for each point on the grid, which is given 

by  where  and reflects the sample sizes for 

the initial effect size estimate.  Next, the density of the observed t-value given % is readily 

obtained using the noncentral t-distribution for each point on the grid of % values (e.g., 

the likelihood function  where ).  The 
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density of the posterior distribution is then the product of the prior density, the likelihood, 

and the scaling constant a-1 defined by Equation (3).  The grid of noncentrality parameter 

values is then rescaled into the metric of standardized mean differences ( ) and 

random samples are drawn from the grid using the density of the posterior distribution as 

sampling weights.  For the examples presented we use the faster normal approximation 

which provide essentially equivalent results. 

6 Because an estimate of the random effects variance was not originally provided, 

these estimates were generated by reanalysis of the data presented in Webb & Sheeran 

(2006; Table 1) under restricted maximum likelihood.  In the interest of simplifying the 

presentation, both the empirical and hierarchical Bayesian analyses treat all of the values 

in Table 1 as the observed estimates. 

7 MCMC methods involve first specifying the posterior distributions of the 

parameters of interest in the model.  After providing initial starting values, random draws 

are made from these posterior distributions.  The parameters in the model are estimated 

using these values, and then the entire process is repeated iteratively a large number of 

times.  Under some minimal assumptions, the process converges to the target posterior 

distribution.  The three equations necessary in the present context for a hierarchical 

Bayesian analysis, assuming a normally distributed prior distribution and a non-

informative hyperprior (i.e., the prior distribution of the prior distribution), are illustrated 

below (e.g., see Gelman, Carlin, Stern, & Rubin, 2004). 

    (7) 
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      (8) 

   .  (9) 

Iterating through these three posterior distribution equations will eventually result in 

convergence to the posterior distribution of interest.  Note that m is the number of studies 

in the meta-analysis; the observed effect size estimate is also included in the analysis, 

resulting in m+1 effect sizes. 


